
Software Engineering by Albert Ambroziewicz

Software Engineering -
Introduction

 Course objectives

 Literature

 Course contents

 Timetable

 Marking scheme

Software Engineering Slide 0.2 A. Ambroziewicz, M. Śmiałek

Good morning

Albert Ambroziewicz: a.ambroziewicz@iem.pw.edu.pl,

I work at the Warsaw University of Technology, Poland within the
EU-founded project ReDSeeDS (Requirements Driven Software
Development System) http://www.redseeds.eu

I also lecture at the Warsaw University of Technology, Poland

I have industry experience (J2EE applications development, R&D).

My professional interests include programming (web applications),
metamodeling, requirements analysis, software architecture,
software engineering processes.

Software Engineering Slide 0.3 A. Ambroziewicz, M. Śmiałek

What is Software Engineering?

Software engineering (SE) is the application of a systematic,
disciplined, quantifiable approach to the development, operation,
and maintenance of software.

-- IEEE definition

Software Engineering Slide 0.4 A. Ambroziewicz, M. Śmiałek

Software Engineering

 Knowledge

 Tools

 Methods for defining software requirements

 Methods for performing software design

 Computer programming

 User interface design

Software Engineering Slide 0.5 A. Ambroziewicz, M. Śmiałek

Objectives

The main objective of the course is to teach proper organization of
the software engineering (SE) process for building software
applications.

This objective is realized through teaching of four SE disciplines:
 user requirements elicitation (UR)
 software requirements formulation (SR)
 architectural design (AD)
 detailed design (DD)

These disciplines are taught as parts of the overall software
engineering methodology based on an iterative lifecycle.

SE covers first two of the above disciplines.

Software Engineering Slide 0.6 A. Ambroziewicz, M. Śmiałek

Literature - main

ESA Board for Software Standardisation and Control (BSSC). ESA
Software Engineering Standards. European Space Agency,
February 1991.

Braude, E. Software Engineering. An Object-Oriented Perspective.
John Wiley & Sons, 2001.

Leffingwell, D., Widrig, D. Managing Software Requirements. A
Unified Approach. Addison-Wesley, 2000.

Fowler M., Scott K., UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley Professional; 2nd
edition (August 25, 1999)

Software Engineering Slide 0.7 A. Ambroziewicz, M. Śmiałek

Literature - supplementary

Jim Arlow, Ila Neustadt. UML and the Unified Process. Practical Object-
Oriented Analysis & Design. Addison-Wesley, 2002.

Martin Fowler, Kendall Scott. UML Distilled, A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley, 2000.

Perdita Stevens, Rob Pooley. Using UML, Software Engineering with
Objects and Components. Addison-Wesley, 2000.

Grady Booch, James Rumbaugh, Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

Ivar Jacobson, Grady Booch, James Rumbaugh. The Unified Software
Development Process. Addison-Wesley, 1999.

James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley, 1998.

Object Management Group. Unified Modeling Language Specification.
Version 2.1.2, 2007 (http://www.omg.org/).

Software Engineering Slide 0.8 A. Ambroziewicz, M. Śmiałek

Course contents (URS)

Software engineering process and
requirements
Problems in software engineering projects
Software engineering methodologies
Core practices of software engineering
Requirements in the software engineering

process

Specifying user requirements
Modelling of the requirements
Requirements documentation
System vision
Business process description
Determining the scope of a software system

1

Software Engineering Slide 0.9 A. Ambroziewicz, M. Śmiałek

Course contents (URS)

Use case, vocabulary and business modelling
Use case model overview and details
Vocabulary construction
Vocabulary and the use case model
Business use cases
Activities – description of use cases
Transformation from the business model to

the user requirements model 2

Software Engineering Slide 0.10 A. Ambroziewicz, M. Śmiałek

Course contents (SRS)

Software requirements – structure and
associated process
Software requirements in an iterative

process
Criteria for use case prioritization
Software requirements and acceptance

testing
User documentation vs. requirements

Software requirements modelling (static)
Class model
Class modelling on the requirements level
Classes mapped from vocabulary notions

3

Software Engineering Slide 0.11 A. Ambroziewicz, M. Śmiałek

Course contents (SRS)

Software requirements modelling
Scenario model
Details of scenario modelling
Scenarios and activities
Scenarios mapped from use cases

Organization and quality of software
requirements
Non-functional requirements types
Properties of good software requirements

specification
Requirements realization – transformation to

design

4

Software Engineering Slide 0.12 A. Ambroziewicz, M. Śmiałek

„0” lecture (26.02): Introduction

1st lecture (5.03): Software engineering process and
requirements

2nd lecture (12.03): Specifying user requirements

3rd lecture (19.03): Use case, vocabulary and
business modelling

Timetable (1) – User Requirements

Software Engineering Slide 0.13 A. Ambroziewicz, M. Śmiałek

4th lecture (26.03): Software requirements –
structure and associated process

5th lecture (2.04): Software requirements modelling
(static)

6th lecture (9.04): Software requirements modelling
(dynamic)

7th lecture (30.04): Organization and quality of
software requirements

Timetable (2) – Software Requirements

Software Engineering Slide 0.14 A. Ambroziewicz, M. Śmiałek

Marking scheme

The course requires the realization of a team work during the
separate exercises in the laboratory (70% of the final mark), as well
as a theoretical tests after lectures (30% of the final mark).

70% Practical part of the mark:
 Points earned during the separate exercises in laboratory

30% Theoretical part of the mark:
 Few 15-25 minute tests during lectures (concerning past and

current lecture material)
 Individual tasks („homework” assignments) – bonus points

Students need 50% of points + 1 point from the laboratory classes
to pass and 50% + 1 of overall points to pass.

At the end of semester above mark will be confirmed during
oral exam.

Software Engineering Slide 0.15 A. Ambroziewicz, M. Śmiałek

Course information

 WikiDyd resources

http://wikidyd.iem.pw.edu.pl/index.cgi/SoftEng

 Consultations
 notify by e-mail (a.ambroziewicz@iem.pw.edu.pl)
 room 224 in the Electrical Engineering building

http://wikidyd.iem.pw.edu.pl/index.cgi/SoftEng

